Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Emerg Microbes Infect ; 11(1): 2529-2543, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2107214

ABSTRACT

Autophagy, a cellular surveillance mechanism, plays an important role in combating invading pathogens. However, viruses have evolved various strategies to disrupt autophagy and even hijack it for replication and release. Here, we demonstrated that Middle East respiratory syndrome coronavirus (MERS-CoV) non-structural protein 1(nsp1) induces autophagy but inhibits autophagic activity. MERS-CoV nsp1 expression increased ROS and reduced ATP levels in cells, which activated AMPK and inhibited the mTOR signalling pathway, resulting in autophagy induction. Meanwhile, as an endonuclease, MERS-CoV nsp1 downregulated the mRNA of lysosome-related genes that were enriched in nsp1-located granules, which diminished lysosomal biogenesis and acidification, and inhibited autophagic flux. Importantly, MERS-CoV nsp1-induced autophagy can lead to cell death in vitro and in vivo. These findings clarify the mechanism by which MERS-CoV nsp1-mediated autophagy regulation, providing new insights for the prevention and treatment of the coronavirus.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/physiology , AMP-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/metabolism , Lysosomes/metabolism , Autophagy , Endonucleases/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Adenosine Triphosphate/metabolism
2.
Virulence ; 13(1): 355-369, 2022 12.
Article in English | MEDLINE | ID: covidwho-1669108

ABSTRACT

MERS-CoV infection can damage the cellular metabolic processes, but the underlying mechanisms are largely unknown. Through screening, we found non-structural protein 1 (nsp1) of MERS-CoV could inhibit cell viability, cell cycle, and cell migration through its endonuclease activity. Transcriptome sequencing revealed that MERS-CoV nsp1 specifically downregulated the mRNAs of ribosomal protein genes, oxidative phosphorylation protein genes, and antigen presentation genes, but upregulated the mRNAs of transcriptional regulatory genes. Further analysis shown nsp1 existed in a novel ribonucleosome complex formed via liquid-liquid phase separation, which did not co-localize with mitochondria, lysosomes, P-bodies, or stress granules. Interestingly, the nsp1-located granules specifically contained mRNAs of ribosomal protein genes and oxidative phosphorylation genes, which may explain why MERS-CoV nsp1 selectively degraded these mRNAs in cells. Finally, MERS-CoV nsp1 transgenic mice showed significant loss of body weight and an increased sensitivity to poly(I:C)-induced inflammatory death. These findings demonstrate a new mechanism by which MERS-CoV impairs cell viability, which serves as a potential novel target for preventing MERS-CoV infection-induced pathological damage.Abbreviations: (Middle East respiratory syndrome coronavirus (MERS-CoV), Actinomycin D (Act D), liquid-liquid phase separation (LLPS), stress granules (SGs), Mass spectrometry (IP-MS), RNA Binding Protein Immunoprecipitation (RIP)).


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Ribosomal Proteins , Viral Nonstructural Proteins , Animals , Gene Expression Regulation , Mice , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Messenger/genetics , Ribosomal Proteins/genetics
3.
Sci Rep ; 10(1): 22366, 2020 12 22.
Article in English | MEDLINE | ID: covidwho-997943

ABSTRACT

Corona Virus Disease 2019 (COVID-19) caused by the emerged coronavirus SARS-CoV-2 is spreading globally. The origin of SARS-Cov-2 and its evolutionary relationship is still ambiguous. Several reports attempted to figure out this critical issue by genome-based phylogenetic analysis, yet limited progress was obtained, principally owing to the disability of these methods to reasonably integrate phylogenetic information from all genes of SARS-CoV-2. Supertree method based on multiple trees can produce the overall reasonable phylogenetic tree. However, the supertree method has been barely used for phylogenetic analysis of viruses. Here we applied the matrix representation with parsimony (MRP) pseudo-sequence supertree analysis to study the origin and evolution of SARS-CoV-2. Compared with other phylogenetic analysis methods, the supertree method showed more resolution power for phylogenetic analysis of coronaviruses. In particular, the MRP pseudo-sequence supertree analysis firmly disputes bat coronavirus RaTG13 be the last common ancestor of SARS-CoV-2, which was implied by other phylogenetic tree analysis based on viral genome sequences. Furthermore, the discovery of evolution and mutation in SARS-CoV-2 was achieved by MRP pseudo-sequence supertree analysis. Taken together, the MRP pseudo-sequence supertree provided more information on the SARS-CoV-2 evolution inference relative to the normal phylogenetic tree based on full-length genomic sequences.


Subject(s)
COVID-19/virology , Chiroptera/virology , Mutation Rate , Phylogeny , SARS-CoV-2/genetics , Amino Acid Sequence , Animals , Genome, Viral , Middle East Respiratory Syndrome Coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Severe Acute Respiratory Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL